本課程《從零掌握生成式 AI、ChatGPT 與 Python 數據科學項目實戰》由 OAK Academy 和 Ali̇ CAVDAR 聯合打造,面向希望系統學習數據科學與生成式 AI 應用的學習者。課程涵蓋人工智慧基礎、Prompt Engineering、ChatGPT-4o 的使用技巧、DALL·E 圖像生成、Whisper 語音處理,以及完整的數據分析與機器學習實戰。
你將通過 Pandas 掌握數據清洗與可視化,藉助 ChatGPT 自動生成代碼、處理缺失值、優化模型參數,完成從 Exploratory Data Analysis 到模型部署的完整流程。課程配套多套真實項目,涵蓋分類、回歸與可解釋性分析,適合初學者或想提升 AI 賦能技能的職場人士。無需編程基礎,跟隨項目實踐,即可構建屬於你的數據科學與 AI 項目組合。
=====================================================
教程名稱:Generative AI & ChatGPT Mastery for Data Science and Python
下載連結:https://www.nidown.com/chatgpt-323152.html
=====================================================
最便捷、最實惠的 ChatGPT Plus 升級服務來了!!!
點擊查看詳情:https://www.kkmac.com/go/chatgpt
=====================================================
英文原版介紹
Published 12/2024
Created by Oak Academy,OAK Academy Team,Ali̇ CAVDAR
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English | Duration: 198 Lectures ( 24h 6m ) | Size: 10.3 GB
Master Generative AI, ChatGPT and Prompt Engineering for Data Science and Python from scratch with hands-on projects
What you’ll learn
What is Artificial Intelligence?
Artificial Narrow Intelligence (ANI)
Artificial General Intelligence (AGI)
Artificial Super Intelligence (ASI)
Subsets of Artificial Intelligence – Machine Learning
Subsets of Artificial Intelligence – Deep Learning
Machine Learning Study with a Real Example
Large Language Models(LLM)
Natural Language Processing(NLP)
A Warning Before Switching to ChatGPT
Revolutionary of the Era: OpenAI
Let’s Get to Know the ChatGPT Interface
Differences in the ChatGPT-4 Interface
ChatGPT’s Endpoints
Prompt Prompt Engineering Power
Summary of Prompt Engineering Fundamentals
Prompt Engineering: Sample Prompts
Best Questions in Prompt Engineering
Summary of the Best Questions in Prompt Engineering
Reinforcing the topic through a scenario
Drawing a Roadmap to the Prompt
Directed Writing Request
Clear Explanation Method
Example-Based Learning
RGC(Role, Goals, Context)
Constrained Responses
Adding Visual Appeal
Prompt Updates
ChatGPT-Google Extension
Email Writing
Summarizing YouTube Videos
Talk to ChatGPT
Quick Access to ChatGPT
Dive Into Websites
Get Prompt Assistance
Using the ChatGPT API
File Reading
Visual Reading
Visual Generation (DALL-E Introduction)
Enhancing Images with DALL-E
Improving Visuals Through Ready-Made Prompts
Combining Images
A Helper Site for Visual Prompts
GPTs
Create Your Own GPT
Useful GPTs
Big News: Introducing ChatGPT-4o
How to Use ChatGPT-4o?
Chronological Development of ChatGPT
What Are the Capabilities of ChatGPT-4o?
Voice Communication with ChatGPT-4o
Instant Translation in 50+ Languages
Interview Preparation with ChatGPT-4o
Visual Commentary with ChatGPT-4o
Data analysis is the process of studying or manipulating a dataset to gain some sort of insight
Big News: Introducing ChatGPT-4o
How to Use ChatGPT-4o?
Chronological Development of ChatGPT
What Are the Capabilities of ChatGPT-4o?
As an App: ChatGPT
Voice Communication with ChatGPT-4o
Instant Translation in 50+ Languages
Interview Preparation with ChatGPT-4o
Visual Commentary with ChatGPT-4o
ChatGPT for Generative AI Introduction
Accessing the Dataset
First Task: Field Knowledge
Loading the Dataset and Understanding Variables
Let’s Perform the First Analysis
Examining Missing Values
Examining Unique Values
Categorical Variables (Analysis with Pie Chart)
Exploratory Data Analysis (EDA)
Categoric Variables vs Target Variable
Correlation Between Numerical and Categorical Variables and the Target Variable
Relationships between variables (Analysis with Heatmap)
Numerical Variables – Categorical Variables with Swarm Plot
Dropping Columns with Low Correlation
Visualizing Outliers
Determining Distributions
Applying One Hot Encoding Method to Categorical Variables
Feature Scaling with the RobustScaler Method for Machine Learning Algorithms
Feature Scaling with the RobustScaler Method for Machine Learning Algorithms
Logistic Regression Algorithm
Cross Validation
ROC Curve and Area Under Curve (AUC)
ROC Curve and Area Under Curve (AUC)
Hyperparameter Tuning for Logistic Regression Model
Decision Tree Algorithm
Support Vector Machine Algorithm
Random Forest Algorithm
Generative AI is artificial intelligence (AI) that can create original content in response to a user’s prompt or request
Getting to know the dataset using ChatGPT
Getting started with Exploratory Data Analysis(EDA) using ChatGPT
Perform Multivariate Analysis using ChatGPT
Prepare data for machine learning model using ChatGPT
Create a machine learning model using the Linear Regression algorithm with ChatGPT
Develop machine learning model using ChatGPT
Perform Feature Engineering using ChatGPT
Performing Hyperparameter Optimization using ChatGPT
Loading Dataset using ChatGPT
Perform initial analysis on Dataset using ChatGPT
Performing the first operation on the Dataset using ChatGPT
Tackling Missing values using ChatGPT
Performing Bivariate analysis with CatPLot using ChatGPT
Performing Bivariate analysis with KdePLot using ChatGPT
Examining the correlation of variables using ChatGPT
Perform a get_dummies operation using ChatGPT
Prepare for Logistic Regression modeling using ChatGPT
Create a Logistic Regression model using ChatGPT
Examining evaluation metrics on the Logistic Regression model using ChatGPT
Perform a GridSearchCv operation using ChatGPT
Model reconstruction with best parameters using ChatGPT
Requirements
A working computer (Windows, Mac, or Linux)
Motivation to learn the the second largest number of job postings relative AI among all others
Desire to learn AI & ChatGPT
Curiosity for Artificial Intelligence and Data Science
Nothing else! It’s just you, your computer and your ambition to get started today
Basic python knowledge