Learn ChatGPT for bioinformatics and Prompt Engineering

Learn ChatGPT for bioinformatics and Prompt Engineering

本課程《AI與ChatGPT在生物信息學中的應用:從入門到實踐》面向希望提升研究效率與數據分析能力的生物信息學研究者、學生和行業從業者,帶你掌握如何將ChatGPT等NLP工具應用於基因組學、轉錄組學、蛋白質組學等實際科研場景中。無需編程背景,具備基礎生信知識即可快速上手。課程結合實操演練與研究導向內容,助你用生成式AI提升科研效率與洞察力。立即加入,開啟你的AI生信研究新篇章!

你將學習:

AI與機器學習在生物信息學中的基本原理
ChatGPT在文獻分析、基因注釋、數據可視化等任務中的應用
如何用提示詞工程高效驅動生物數據分析
實戰案例:使用真實數據集進行分析與解讀
生物信息學中的AI倫理、安全性與數據偏倚問題

=====================================================

教程名稱:Learn ChatGPT for bioinformatics and Prompt Engineering

下載連結:https://www.nidown.com/chatgpt-0482.html

=====================================================

最便捷、最實惠的 ChatGPT Plus 升級服務來了!!!

點擊查看詳情:https://www.kkmac.com/go/chatgpt

=====================================================

英文原版介紹

Published 5/2024
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 24m | Size: 671 MB

Introduction to AI and Unlocking the Power of Chatbots (ChatGpt) in Bioinformatics Research (Prompt Engineering)

What you’ll learn

An introduction to artificial intelligence and machine learning in bioinformatics.
Familiarity with popular AI-based tools and techniques for bioinformatics analysis.
Understanding of how to use ChatGpt to analyze various types of biological data, including genomics, transcriptomics, and proteomics.
Hands-on experience with real-world examples and datasets to apply AI techniques for bioinformatics analysis.
Best practices and considerations for using AI in bioinformatics, including data quality, bias, and ethics.
Strategies for effectively communicating and presenting bioinformatics analysis results.

Requirements

Since this course is designed to be beginner-friendly, there are no strict prerequisites for taking the course. However, students should have a basic understanding of bioinformatics and be familiar with programming concepts, as this will help them understand the material more effectively. Some familiarity with a programming language such as Python will be helpful, but not strictly required.

評論 (0)

7 + 2 =